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ABSTRACT

A two-state Markov chain probability model has baesed to investigate the pattern of occurrence ailfyd
precipitation during the rainy season over the Mailda delta of Odisha state of India. The studydsda on the daily
rainfall data for a period of 28 years for four s@blogical stations in the region. Under the aggion of the dependence
of daily precipitation on that of the previous daytention has been focused on the analysis oéioedspects of the

random structure of the precipitation phenomenaroimformity with the Markov chain properties.

KEYWORDS: Chi-square Test, Dry and Wet Spells, Goodness tpfMérkov Chain Model, Steady State Probability,
Transition Probability, Weather Cycle

1. INTRODUCTION

It is natural to expect that the total crop prodctand crop yield in any region depend not onlyta total
rainfall amount but also on the pattern of occureeaf rainfall such as spells of wet/rainy and days, the number of dry
days between two rainy days, length of weatherecgtt. A model-based scientific study of the patt&occurrence of
daily rainfall at a regional level is therefore cial to assess the crop failure due to deficiencgxeess of rainfall for the
rain fed agriculture under the local climatic cdmdis. Once the rainfall process is adequatelyapmtopriately modeled,
the model can be used to provide prior knowledgéhefstructural characteristics of varying rainfalstems which are
very much essential for crop planning and managénae water management decisions. As the distobudf rainfall
varies over space and time, it is required to asathie data covering long periods recorded at uariocations to obtain

reliable information.

The Markov chain model has already been shown inyniastances to be an appropriate model for stggyin
sequences of wet and dry days [see, for exampleigdadnd Neumann (1962)]. Because, other modelscéarstant
probabilities are not able to describe the dailgsiséence of wet and dry conditions. Weiss (19B&ku (1971), Bhargava
etal. (1973), Sundararaj and Ramachandra (1975), AmgjeBaivastava (1986), Rahman (1999a, 1999b), Rearach and
Dani (1993), Akhter and Hossian (1998), Rahrdaal. (2002), Banilket al. (2002), Zhao and Chu (2006), Spoof and Pryor
(2008), Dastidaet al. (2010) among others analyzed situations that ajyelyMarkov chain process.

The Mahanadi delta, which is situated on the easteast of India, gets rainfall from the south-wesinsoon
with an average annual rainfall 1572 mm and thal tmtmber of rainy days in a year ranging from®B8@ days. The most

pre-dominant crop in this region is paddy coverimgout 95% of the total area under cultivation. Asfisient
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supplementary irrigation facilities are not avaiéalin most parts, people mainly depend on winted antumn paddy
which are grown during monsoon season (June-Segi®naimd harvested during post-monsoon season (Erctad
November). During monsoon season a large varietyegétables are also grown here. Although the guardf rainfall
received by this river basin is fairly good, itgdgular distribution and variation in time and spdeads to heavy
downpour or very low precipitation in some areaarighility in rainfall is therefore a cause of grertess to the farming
activities, crop production and crop yield as tgeiaulture is mostly rain fed. Hence, there is némdin-depth study and

understanding of the effects of various rainfaletteristics in this region for planning respome&asures.

This paper presents a statistical analysis in aim@tentify various characteristics of the pattefroccurrence of
rainfall by applying a 2-state Markov chain probiépimodel to the data on daily rainfall amount 8 years during rainy
season (June-October). The research is confinezhlip the rainy season because during this seasamahadi delta

receives more than 85% of its total annual rairdatl agricultural activity depends on the amountogived rainfall.

2. DATA AND METHODOLOGY
Source and Nature of Data

The present investigation utilizes daily rainfadital of the four meteorological stations — Bhubam@s@uttack,
Paradip and Puri of the Mahanadi delta region @ryRars (1982-2009). The relevant data were cekkedtom the
Meteorological Centre, Bhubaneswar, Odisha. Asrtiry season in the deltaic region is generallyfioed to five
monthsi.e., from June to October, the period consideredHerstudy was taken froni'June to 3% October of each year

which also coincides with the growth season ofpthedy crop, the major cash crop in the tract.
Markov Chain Model and Estimation

Let us identify a day as a rainy or wet day (a diay) if it receives more than or equal to 2.5 nfesq than 2.5
mm) of rainfall according to the definition propdsey the Indian Meteorological Departmeadt [ Basu (1971), Reddst
al. (1986)]. Further, under the assumption that tbeuoence of a wet or a dry day is influenced doyythe weather
condition of the previous day, the process of ommge of wet and dry days can be described by atdte Markov chain
with wet and dry days as the two states. The tiiansprobability matrix, which describes the 2 -atetMarkov chain

model is

P, P
P= [ %0 01], 2.1
Py Py @D

with Pyy + Py; = 1 andP,y + Py; = 1, wherePy,, Py;, P1o andP;, are the transition probabilitiese., they are

respectively the probabilities of occurrence offibllowing conditional events :
Hy,: A day is a dry day given that the preceding dag & dry day
H,,: A day is a wet day given that the preceding dag & dry day
H,,: A day is a dry day given that the preceding dag & wet day
H,,: A day is a wet day given that the preceding dag & wet day

Suppose that each day frorfl dune to 3% October of each year is classified according sodbcurrence of the
four eventsH,,, Hy,, Hyo andH;, such that ¥ June is classified on the consideration of weatbedition (wet or dry) of

31% May. Leta, b, c andd respectively be the observed frequencies of tioeroences ofly,, Hy;, Hyo, andH,;. Then the
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maximum likelihood estimates of the unknown traosiprobabilities (model paramete), andP,, are obtained as

d

~ b b -~ d
Py, = =—=— andP;; = =—=—
01 = Po1 = o 11 = P11 = 3 n

wherea + b = ny andc + d = n,. Estimated variances pf; andp,, are respectively given by

Po1(1-Po1) 2P

o

v(Po1) =
and

v(pyy) = P11(1-p11) (2.3)

niy
[cf., Bhargavat al. (1973)].

The transition probabilities are conditional proiiibs. But, the probability of a dry dagP,) and the probability

of a wet day(P,) are also estimated from the observed frequenéigeaonditional events as follows:

andﬁ1=p1= btd

ng+n, no+ng

In order to test that the occurrence of a wet grddy is influenced by the immediately preceding'slaveather,
so that the Markov chain model works reasonably,veehormal test (assuming largg can be employed by computing

the usual normal deviate test statistic

7 = Po1— P11 2.4
est. S.E(po1— P11) (24)

[cf., Bhargavat al. (1973)].

To have good geographical coverage and good qudlityformation, the transition probabilitiey, andP;; are

estimated byp,;, = ZZ% and p;; = ZZ% respectively for the whole study region whegeb;, c;, d;, n,; andn,; are the
0i 1i

respective values af, b, ¢, d, n, andn, for the i*" station. Taking these estimates as the expectdshpildies, we can
apply two chi-square tests for each station, tottes discrepancies between the observed and fhectd values gy,

andp, ;. For thei" station, the chi-square statistics, each withdreke of freedom (df), are defined by

2 2
[ S T S
noi(1-Po1)  MoiPo1

a

Xz(Pm) = — Ny; » (2.5)

and

a2
A i=1,2,34, (2.6)

ny;(1-p11)  NqiP11

2
Ci

x? (p11) =

[cf., Rohatgi and Saleh (2000)].

As a follow-up to some earlier works on the 2-stdsrkov chains, the system of occurrence of thaieeges of
wet and dry days, after a sufficiently long perafdime, is expected to settle down to a conditdstatistical equilibrium
with steady state or equilibrium probabilities whi@re independent of the initial conditions. Thgsebabilities

corresponding to dry and wet days are given by

_ 1-P11
1+Pp1—P11

Poq

andm, = —2—,
1+Pg1—P11

Ty
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respectively. The number of days after which tlaesof equilibriumi.e., the original state is attained is equal to
the number of steps or the power of the-matrix so that its diagonal elements with equattyandrn, [cf., Cox and
Miller (1967)].

Expected Lengths of Wet and Dry Spells

The wet and dry spell (or run) lengths are very ontgint statistical descriptors of wet and dry pdsion a
geographical area. Assuming that the lengths ofamdtdry spells (denoted W andD respectively) follow a geometric
distribution [cf., Bhargaveet al. (1973), Sundararaj and Ramachandra (1975), Rannahd Dani (1993)], the probability

of a wet spell of lengtl is given by
P(W =X) = (l_Pll)Plxl_l, X = 1,2, .....

and therefore, the expected length of the wet spelbtained as

EW) =35, x (1— PP =——. 2.7)

T 1-pPyy

On the other hand, the probability of a dry spéleagthy is
P(D=y) =Py(1—=Py)” ™", y=12,....

and the expected length of the dry spell is given a

1
Py

ED) = (2.8)

Hence, the expected length of weather cycie., a dry spell followed by a wet spell or vice-veisgiven by

LN (2.9)

1-P11 Poq

E(C) =EW)+E(D) =

In order to test the strength of fitting of the geric distribution for describing the distributeof dry and wet
spell lengths under the Markovian preconditionsleendence, a chi-square goodness of fit test egretformed using

the test statistic

2
=y (observed frequency - expected frequency
&k expected frequency !

Xe (2.10)
which is asymptotically distributed as chi-squarthw — 1 df, wherek = number of spells.

As discussed in Cox and Miller (1967), the occureenf the wet and dry days can be easily treatedepsndent
Bernoullian trials so that the expected valueshefriumber of wet and dry days ima day period, denoted b¥;, andD,

respectively, are given by

[cf., Reddyet al. (1986)]. Assumingr to be large, the asymptotic variance of the nunolberet (or dry) days in a
- day period is given by

nPy1(1—P11)(1+P11—Po1)
Vo (1-P11+Pp1)3 (2.12)

[cf., Bhargavat al. (1973)]
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The maximum likelihood estimates af,, m,, E(W), E(D), E(C), E(W,), E(D,) and V, are obtained in the
usual way replacingP,; and P;; by their estimatesp,; and p,,respectively. These estimates are denoted by

fo, 72, E(W), E(D), E(C), E(W,), E(D,) and?,.

3. RESULTS AND DISCUSSIONS
Estimation of Model Parameters

The collected raw data on the daily rainfall arasslfied into four classes according to the cood#i events
H,,, H,,, Hi, andH,,;. From the actual frequencies of these classegdiresponding relative frequencies are computed
in order to obtain the maximum likelihood estimatdsthe transition (conditional) probabilitig®,,, Pyq, P, and P,

along with the unconditional probabiliti® andP, for the four meteorological stations.

From the calculated value of the— statistic defined in (2.4), it is found that| > 3 for all stations. This high
significant value shows that the weather of a dagfluenced by the weather of the previous dayiddethe occurrences of wet

and dry days in our study domain can be rightly elediby a 2 — state Markov chain.

In order to test for differences im,, andp,; from station to stationy?-tests for the homogeneity of rainfall
between the stations were run by using formulag) (@nd (2.6). It is found that the calculate#l values for all four
stations are insignificant in respect of both ttarametersP,; andP;; at 5 % as well as 1 % levels of significance.
Therefore, the patterns of the occurrence of rliafahese four precipitation stations are regdrds similar. Hence, their
daily rainfall amounts are grouped together (popladhe usual manner in order to obtain a singlineate of the daily
rainfall amount, to compose common estimates ohibdel parameters and to study various rainfalfadtteristics for the

whole Mahanadi delta climatic situation.

Estimated values of the various unconditional pbiliiees and conditional probabilities associatedhwour
2-state Markov chain model, considered separatelyfch month and for their combination, are diggdain Table 3.1.
Entries of this table clearly indicate that thehabilities of the rainfall are maximum and minimimAugust and October
respectively. The conditional probabilities for Gmer show how rapidly and markedly the dry condgicestablish
themselves. The probabilities of wet conditions flois month are low, indicating dry conditions. Thaconditional

probabilities are pronouncedly different from tha$ehe conditional ones.

Table 3.1: Estimates of Conditional and Unconditionl Probabilities

Conditional Unconditional
Months Probabilities Probabilities
Poo Po1 Pio P11 Po Pi

June 0.7599 0.2401 0.4797 0.5203 0.6714 0.3286
July 0.6635 0.3365 0.4545 0.5455 0.5734 0.4266
August 0.6057 0.3943 0.4118 0.5882 0.5104 0.4896
September 0.7274 0.2726 0.4430 0.557(¢ 0.6190 0.3810
October 0.8576 0.1424 0.4969 0.5031 0.77448 0.2252
June to 0.7350 0.2650 0.4502 0.5498 0.6296 0.3704
October

Estimation of Expected Dry and Wet Days (With SpelLengths)

Various statistical descriptors of the Markov chaindelviz., estimated values of expected number of dry aetd w

days €(D,) andE(W,)) and their spell length€Z(D) andE (W)), length of weather cyclé(C)), S.D. of the estimated
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number of wet or dry days, steady state probatsli(it, and ;) and number of days required for equilibrium, as

M.K. Sukla, A.K. Mangaraj & L.N. Sahoo

explained in the preceding section, are computec¢@ampiled in Table 3.2.

Table 3.2: Statistical Descriptors the Markov ChainProbability Model

. Months
Statistical June o
Descriptors June July August September | October October
o 0.6664 0.5746 0.5109 0.6190 0.7772 0.6295
i 0.3336 0.4254 0.4891 0.3810 0.2224 0.3705
E(Dy) 10.9934= 20 | 17.8122= 18(15.8365= 16| 18.5714= 19| w000 | 99300
B 10.0066= 10 | 13.1878= 13[15.1635= 15| 11.4286= 11| e’ | oot
E(D) 4.1649 2.9714 2.5339 3.6684 7.021Q 3.7732
E(W) 2.0845 2.2000 2.4282 2.2575 2.0126 2.2210
E0) 6.2494 5.1714 4.9641 5.9259 9.0336 5.994p
S D. 0(;;;;’ Orwel 34438 3.4029 3.3869 3.5636 3.3801 8.0060
No. of days to 09 08 07 09 13 10
equilibrium
Table 3.3: Observed and Expected Frequencies of Wahd Dry Spells (June-October)
Wet Spell Dry Spell
el LEmgitn Observed Expected Observed Expected
(Days)
Frequency Frequency Frequency Frequency
1 1369 1316 903 824
2 655 724 642 606
3 412 398 440 445
4 242 219 309 327
5 114 120 207 241
6 66 66 157 177
7 28 36 112 130
8 16 20 87 96
9 10 11 65 70
10 12* 14* 43 52
11 - - 35 38
12 - - 26 28
13 - - 19 21
14 - - 15 15
15 - - 11 11
16 - - 10 8
17 - - 9 6
18 - - 21 16**
Calculated Value of?-
Statistic f2) 14.872 27.199
Degrees of Freedom 09 17
— >
1% Crltlcai Value ofy 21 666 33.409
(X0.0l) 5
oo
5% Crltlcai Value ofy 16.919 27 587
(X.05)
*Frequencies corresponding to spell lengthO
** Frequencies corresponding to spell length8
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From Table 3.2, it can be seen that the expectegtheof a dry spell varies from 2.5339 to 7.0219sdahereas
that of wet spell varies from 2.0126 to 2.4282 dayss means that after every 3 to 7 consecutiyeddys, a wet day is
likely to occur and after every 2 consecutive ways] a dry day is likely to occur. However, compluteerall expected
values of the spell lengths indicate that afterrgve consecutive dry days, a wet day is expectatl &ter every 2
consecutive wet days, a dry day is expected duhiegainy season. Hence, for this period the ergelength of weather

cycle is about 6 days.

It is also evident from the Table 3.2 that the rhenfugust possess the highest number of expecteg days
i.e, 15 days and the lowest number of expected dyg ta.,, 16 days. Assuming that the variablés andD,, follow
normal distribution, we have computed 95% configeimtervals forE' (W,,) andE(D,,). From these confidence intervals
we may conclude that the rainy days (dry days)exqgected to lie between 41 to 72 days (81 to 13®)dduring the

period of 153 days of the rainy season.

For Augustz, andf,values are respectively smaller and larger thaarationths and for the consolidated period
from June to October these values are 0.6295 &1d9.respectively. As the number of days to equilib for the months
varies from 7 to 13 days, this proves that aftey I3 days, during the rainy season, the probglufithe day being wet or

being dry is independent of the initial weatherditons.

As a check of the adequacy of the Markov based gé&amdistribution that is fitted to the lengthsafy and wet
spells, they2-test for goodness of fit at 1% and 5% levels ghiicance has been applied using the test statigtiined in
(2.10). The test results for the different monttesraore or less similar and they provide evidewceafiite good fit in each
case. We do not present the results in respectoofligess of fit test for the individual months besults for the
consolidated months (June — Octolieg) for the rainy season in Table 3.3. The insigaificvalues of the calculatgd
statistic prove that the observed distributionshef lengths of wet and dry spells are very weléfitby the Markov based
geometric distribution. The graphical representetiof the observed and expected frequency disimibaifor the wet and

dry spell lengths are shown in Figures 3.1 and&spectively to illustrate the closeness of sutshvisually.
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Figure 3.1: Observed and Expected Frequencies of W8pells
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Figure 3.2: Observed and Expected Frequencies of PiSpells

4. CONCLUSIONS

Our study on the different aspects of the pattermaly rainfall occurrence at Mahanadi delta leadsthe

following tentative conclusions:

The Markov chain probability model appears to havgood approximation for describing the occurreoicthe

sequence of wet and dry days.

The rainfall distributions of the four meteorologjicstations of the study domain exhibits more @slsimilar

pattern.

On the whole, as judged by thé - test of goodness of fit, the geometric distiibtunder the assumption of
Markovian dependence of weather occurrence seelns satisfactory for describing the distributioisvet and
dry spell lengths.

During the rainy season, the expected lengthsy#ggdell and wet spell are about 4 days and 2 dsgzectively,
and the system settles down after about 7 to 13 daya condition of statistical equilibrium in whighe
occupation probabilities are independent of thBahconditions. The estimated ranges for the etqgeaumbers

of dry days and rainy days during the period of d&@s are 81-112 and 41-72 days respectively.

Although the Markov chain model provides a satitfacfit to our daily rainfall data for evaluatimgobability of

occurrence of the sequence of wet or dry days,tressthat more detailed and exhaustive investigatnay be made with the

help of other models and with new definitions oftaed dry days as well as other goodness of fistes
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