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ABSTRACT 

A two-state Markov chain probability model has been used to investigate the pattern of occurrence of daily 

precipitation during the rainy season over the Mahanadi delta of Odisha state of India. The study is based on the daily 

rainfall data for a period of 28 years for four meteorological stations in the region. Under the assumption of the dependence 

of daily precipitation on that of the previous day, attention has been focused on the analysis of certain aspects of the 

random structure of the precipitation phenomenon in conformity with the Markov chain properties. 
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1. INTRODUCTION 

It is natural to expect that the total crop production and crop yield in any region depend not only on the total 

rainfall amount but also on the pattern of occurrence of rainfall such as spells of wet/rainy and dry days, the number of dry 

days between two rainy days, length of weather cycle etc. A model-based scientific study of the pattern of occurrence of 

daily rainfall at a regional level is therefore crucial to assess the crop failure due to deficiency or excess of rainfall for the 

rain fed agriculture under the local climatic conditions. Once the rainfall process is adequately and appropriately modeled, 

the model can be used to provide prior knowledge of the structural characteristics of varying rainfall systems which are 

very much essential for crop planning and management, and water management decisions. As the distribution of rainfall 

varies over space and time, it is required to analyze the data covering long periods recorded at various locations to obtain 

reliable information.  

The Markov chain model has already been shown in many instances to be an appropriate model for studying 

sequences of wet and dry days [see, for example Gabriel and Neumann (1962)]. Because, other models for constant 

probabilities are not able to describe the daily persistence of wet and dry conditions. Weiss (1964), Basu (1971), Bhargava    

et al. (1973), Sundararaj and Ramachandra (1975), Aneja and Srivastava (1986), Rahman (1999a, 1999b), Ravindranan and 

Dani (1993), Akhter and Hossian (1998), Rahman et al. (2002), Banik et al. (2002), Zhao and Chu (2006), Spoof and Pryor 

(2008), Dastidar et al. (2010) among others analyzed situations that apply the Markov chain process.  

The Mahanadi delta, which is situated on the eastern coast of India, gets rainfall from the south-west monsoon 

with an average annual rainfall 1572 mm and the total number of rainy days in a year ranging from 55 to 80 days. The most 

pre-dominant crop in this region is paddy covering about 95% of the total area under cultivation. As sufficient 
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supplementary irrigation facilities are not available in most parts, people mainly depend on winter and autumn paddy 

which are grown during monsoon season (June-September) and harvested during post-monsoon season (October and 

November). During monsoon season a large variety of vegetables are also grown here. Although the quantum of rainfall 

received by this river basin is fairly good, it’s irregular distribution and variation in time and space leads to heavy 

downpour or very low precipitation in some areas. Variability in rainfall is therefore a cause of great stress to the farming 

activities, crop production and crop yield as the agriculture is mostly rain fed. Hence, there is need for in-depth study and 

understanding of the effects of various rainfall characteristics in this region for planning response measures.  

This paper presents a statistical analysis in order to identify various characteristics of the pattern of occurrence of 

rainfall by applying a 2-state Markov chain probability model to the data on daily rainfall amount for 28 years during rainy 

season (June-October). The research is confined to only the rainy season because during this season, Mahanadi delta 

receives more than 85% of its total annual rainfall and agricultural activity depends on the amount of received rainfall.  

2. DATA AND METHODOLOGY 

Source and Nature of Data  

The present investigation utilizes daily rainfall data of the four meteorological stations – Bhubaneswar, Cuttack, 

Paradip and Puri of the Mahanadi delta region for 28 years (1982-2009). The relevant data were collected from the 

Meteorological Centre, Bhubaneswar, Odisha. As the rainy season in the deltaic region is generally confined to five 

months i.e., from June to October, the period considered for the study was taken from 1st June to 31st October of each year 

which also coincides with the growth season of the paddy crop, the major cash crop in the tract.  

Markov Chain Model and Estimation  

Let us identify a day as a rainy or wet day (a dry day) if it receives  more than or equal to 2.5 mm (less than 2.5 

mm) of rainfall according to the definition proposed by the Indian Meteorological Department [cf., Basu (1971), Reddy et 

al. (1986)]. Further, under the assumption that the occurrence of a wet or a dry day is influenced only by the weather 

condition of the previous day, the process of occurrence of wet and dry days can be described by a 2 – state Markov chain 

with wet and dry days as the two states. The transition probability matrix, which describes the 2 – state Markov chain 

model is 

� = ���� ���
��� ���� ,             (2.1)  

with ��� + ��� = 1 and ��� + ��� = 1, where ���, 	���, 	��� and ��� are the transition probabilities i.e., they are 

respectively the probabilities of occurrence of the following conditional events : 

���: A day is a dry day given that the preceding day was a dry day  

���: A day is a wet day given that the preceding day was a dry day  

���: A day is a dry day given that the preceding day was a wet day  

���: A day is a wet day given that the preceding day was a wet day  

Suppose that each day from 1st June to 31st October of each year is classified according to the occurrence of the 

four events ���, 	���, ��� and ��� such that 1st June is classified on the consideration of weather condition (wet or dry) of 

31st May. Let �, 
, � and � respectively be the observed frequencies of the occurrences of ���, ���, ��� and ���. Then the 
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maximum likelihood estimates of the unknown transition probabilities (model parameters) ��� and ��� are obtained as 

���� = ��� = �
��� =

�
��   and  ���� = ��� = �

��� =
�
�� ,  

where � + 
 = �� and � + � = ��. Estimated variances of ��� and ��� are respectively given by 

������ = ����������
��                                                 (2.2) 

and  

������ = ����������
��             (2.3) 

[cf., Bhargava et al. (1973)]. 

The transition probabilities are conditional probabilities. But, the probability of a dry day ���� and the probability 

of a wet day ���� are also estimated from the observed frequencies of the conditional events as follows:  

��� = �� = ���
�����  and  ��� = �� = ���

����� .  

In order to test that the occurrence of a wet or dry day is influenced by the immediately preceding day’s weather, 

so that the Markov chain model works reasonably well, a normal test (assuming large	�) can be employed by computing 

the usual normal deviate test statistic 

 = ����	���
est. S.E. �����	����	            (2.4) 

[cf., Bhargava et al. (1973)]. 

To have good geographical coverage and good quality of information, the transition probabilities ��� and ��� are 

estimated by  �̅�� = ∑�#
∑��#  and  �̅�� = ∑�#

∑��# respectively for the whole study region where �$ , 
$ , �$ , �$ , ��$ and ��$ are the 

respective values of �, 
, �, �, ��	and �� for the 	%&'	station. Taking these estimates as the expected probabilities, we can 

apply two chi-square tests for each station, to test the discrepancies between the observed and the expected values of ��� 

and	���. For the %th station, the chi-square statistics, each with 1 degree of freedom (df), are defined by 

()����� = �#*
��#����̅���+

�#*
��#�̅�� − ��$ ,            (2.5) 

and    

()����� = �#*
��#����̅��� +

�#*
��#�̅�� − ��$ , % = 1, 2, 3, 4,         (2.6) 

[cf., Rohatgi and Saleh (2000)].  

As a follow-up to some earlier works on the 2-state Markov chains, the system of occurrence of the sequences of 

wet and dry days, after a sufficiently long period of time, is expected to settle down to a condition of statistical equilibrium 

with steady state or equilibrium probabilities which are independent of the initial conditions. These probabilities 

corresponding to dry and wet days are given by  

/� = ��0��
��0���0�� and /� = 0��

��0���0�� , 
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respectively. The number of days after which the state of equilibrium i.e., the original state is attained is equal to 

the number of steps or the power of the � −matrix so that its diagonal elements with equal to /�	and	/� [cf., Cox and 

Miller (1967)]. 

Expected Lengths of Wet and Dry Spells  

The wet and dry spell (or run) lengths are very important statistical descriptors of wet and dry periods in a 

geographical area. Assuming that the lengths of wet and dry spells (denoted by 1 and 2 respectively) follow a geometric 

distribution [cf., Bhargava et al. (1973), Sundararaj and Ramachandra (1975), Ravindran and Dani (1993)], the probability 

of a wet spell of length 3 is given by 

��1 = 3� = �1 − �������4��	, 3 = 1, 2, … ..  
and therefore, the expected length of the wet spell is obtained as 

7�1� 	= ∑ 3	�1 − �������4��	∞48�  = �
��0�� .           (2.7) 

On the other hand, the probability of a dry spell of length 9 is  

��2 = 9� = ����1 − ����:��	, 9 = 1,2, … ..  
and the expected length of the dry spell is given as 

7�2� = �
0�� .             (2.8) 

Hence, the expected length of weather cycle ; i.e., a dry spell followed by a wet spell or vice-versa is given by 

7�;� = 7�1� + 7�2� = �
��0�� +

�
0��	.          (2.9) 

In order to test the strength of fitting of the geometric distribution for describing the distributions of dry and wet 

spell lengths under the Markovian preconditions of dependence, a chi-square goodness of fit test can be performed using 

the test statistic  

(<) = ∑ =observed frequency - expected frequency>2

expected frequencyk ,        (2.10) 

which is asymptotically distributed as chi-square with ? − 1 df, where ? = number of spells.  

As discussed in Cox and Miller (1967), the occurrence of the wet and dry days can be easily treated as dependent 

Bernoullian trials so that the expected values of the number of wet and dry days in a � - day period, denoted by 1� and 2� 

respectively, are given by  

7�1�� = �/�  and  7�2�� = �/� ,          (2.11) 

[cf., Reddy et al. (1986)]. Assuming � to be large, the asymptotic variance of the number of wet (or dry) days in a � 

- day period is given by 

@�	~	�0�����0������0���0������0���0���B           (2.12) 

[cf., Bhargava et al. (1973)] 
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The maximum likelihood estimates of		/�, /�, 7�1�, 7�2�, 7�;�, 7�1��, 7�2��	and		@� are obtained in the 

usual way replacing ��� and ��� by their estimates ��� and ���respectively. These estimates are denoted by 

/C�, /C�, 7��1�, 7��2�, 7��;�, 7��1��, 7��2�� and	@��. 

3. RESULTS AND DISCUSSIONS 

Estimation of Model Parameters  

The collected raw data on the daily rainfall are classified into four classes according to the conditional events 

���, ���, ��� and	���. From the actual frequencies of these classes, the corresponding relative frequencies are computed 

in order to obtain the maximum likelihood estimates of the transition (conditional) probabilities ���, 	���, 	��� and ��� 

along with the unconditional probabilities ��	and	�� for the four meteorological stations.  

From the calculated value of the   – statistic defined in (2.4), it is found that | | > 3 for all stations. This high 

significant value shows that the weather of a day is influenced by the weather of the previous day. Hence, the occurrences of wet 

and dry days in our study domain can be rightly modeled by a 2 – state Markov chain.  

In order to test for differences in ���	and	��� from station to station, ()-tests for the homogeneity of rainfall 

between the stations were run by using formulae (2.5) and (2.6). It is found that the calculated () values for all four 

stations are insignificant in respect of both the parameters ���	and	��� at 5 % as well as 1 % levels of significance. 

Therefore, the patterns of the occurrence of rainfall at these four precipitation stations are regarded as similar. Hence, their 

daily rainfall amounts are grouped together (pooled) in the usual manner in order to obtain a single estimate of the daily 

rainfall amount, to compose common estimates of the model parameters and to study various rainfall characteristics for the 

whole Mahanadi delta climatic situation.  

Estimated values of the various unconditional probabilities and conditional probabilities associated with our            

2-state Markov chain model, considered separately for each month and for their combination, are displayed in Table 3.1. 

Entries of this table clearly indicate that the probabilities of the rainfall are maximum and minimum in August and October 

respectively. The conditional probabilities for October show how rapidly and markedly the dry conditions establish 

themselves. The probabilities of wet conditions for this month are low, indicating dry conditions. The unconditional 

probabilities are pronouncedly different from those of the conditional ones. 

Table 3.1: Estimates of Conditional and Unconditional Probabilities 

Months 
Conditional 
Probabilities 

Unconditional 
Probabilities 

EFF EFG EGF EGG EF EG 
June 0.7599 0.2401 0.4797 0.5203 0.6714 0.3286 
July 0.6635 0.3365 0.4545 0.5455 0.5734 0.4266 
August 0.6057 0.3943 0.4118 0.5882 0.5104 0.4896 
September 0.7274 0.2726 0.4430 0.5570 0.6190 0.3810 
October 0.8576 0.1424 0.4969 0.5031 0.7748 0.2252 
June to 
October 

0.7350 0.2650 0.4502 0.5498 0.6296 0.3704 

 
Estimation of Expected Dry and Wet Days (With Spell Lengths)  

 Various statistical descriptors of the Markov chain model viz., estimated values of expected number of dry and wet 

days (7��2�� and 7��1��) and their spell lengths (7��2� and 7��1�), length of weather cycle (7��;�), S.D. of the estimated 
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number of wet or dry days, steady state probabilities �/C� and /C�) and number of days required for equilibrium, as 

explained in the preceding section, are computed are compiled in Table 3.2.  

Table 3.2: Statistical Descriptors the Markov Chain Probability Model 

Statistical 
Descriptors 

Months 

June July August September October 
June to 
October 

/C� 0.6664 0.5746 0.5109 0.6190 0.7772 0.6295 

/C� 0.3336 0.4254 0.4891 0.3810 0.2228 0.3705 

7��2�� 19.9934 ≅ 20 17.8122 ≅ 18 15.8365 ≅ 16 18.5714 ≅ 19 
24.0934 
≅ 24 

96.3090 
≅ 96 

7��1�� 10.0066 ≅ 10 13.1878 ≅ 13 15.1635 ≅ 15 11.4286 ≅ 11 
6.9066 
≅ 07 

56.6910 
≅ 57 

7��2� 4.1649 2.9714 2.5339 3.6684 7.0210 3.7732 
7��1� 2.0845 2.2000 2.4282 2.2575 2.0126 2.2210 
7��;� 6.2494 5.1714 4.9641 5.9259 9.0336 5.9942 

S. D. of dry or wet 
days 

3.4438 3.4029 3.3869 3.5636 3.3801 8.0060 

No. of days to 
equilibrium 

09 08 07 09 13 10 

 
Table 3.3: Observed and Expected Frequencies of Wet and Dry Spells (June-October) 

Spell Length 
(Days) 

Wet Spell Dry Spell 
Observed 
Frequency 

Expected 
Frequency 

Observed 
Frequency 

Expected 
Frequency 

1 1369 1316 903 824 
2 655 724 642 606 
3 412 398 440 445 
4 242 219 309 327 
5 114 120 207 241 
6 66 66 157 177 
7 28 36 112 130 
8 16 20 87 96 
9 10 11 65 70 
10 12* 14* 43 52 
11 - - 35 38 
12 - - 26 28 
13 - - 19 21 

14 - - 15 15 

15 - - 11 11 
16 - - 10 8 
17 - - 9 6 
18 - - 21** 16** 

Calculated Value of ()-
Statistic ((<)) 

14.872 27.199 

Degrees of Freedom 09 17 

1% Critical Value of ()  
((�.��) ) 

21.666 33.409 

5% Critical Value of ()  
((�.�O) ) 

16.919 27.587 

*Frequencies corresponding to spell length ≥ 10        

** Frequencies corresponding to spell length ≥ 18 
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From Table 3.2, it can be seen that the expected length of a dry spell varies from 2.5339 to 7.0210 days whereas 

that of wet spell varies from 2.0126 to 2.4282 days. This means that after every 3 to 7 consecutive dry days, a wet day is 

likely to occur and after every 2 consecutive wet days, a dry day is likely to occur. However, computed overall expected 

values of the spell lengths indicate that after every 4 consecutive dry days, a wet day is expected and after every 2 

consecutive wet days, a dry day is expected during the rainy season. Hence, for this period the expected length of weather 

cycle is about 6 days.  

It is also evident from the Table 3.2 that the months August possess the highest number of expected rainy days 

i.e., 15 days and the lowest number of expected dry days i.e., 16 days. Assuming that the variables 1�	and	2� follow 

normal distribution, we have computed 95% confidence intervals for 7�1��	and	7�2��. From these confidence intervals 

we may conclude that the rainy days (dry days) are expected to lie between 41 to 72 days (81 to 112 days) during the 

period of 153 days of the rainy season.  

For August,	/C� and /C�values are respectively smaller and larger than other months and for the consolidated period 

from June to October these values are 0.6295 and 0.3705 respectively. As the number of days to equilibrium for the months 

varies from 7 to 13 days, this proves that after 7 to 13 days, during the rainy season, the probability of the day being wet or 

being dry is independent of the initial weather conditions.  

As a check of the adequacy of the Markov based geometric distribution that is fitted to the lengths of dry and wet 

spells, the ()-test for goodness of fit at 1% and 5% levels of significance has been applied using the test statistic defined in 

(2.10). The test results for the different months are more or less similar and they provide evidence for quite good fit in each 

case. We do not present the results in respect of goodness of fit test for the individual months but results for the 

consolidated months (June – October) i.e., for the rainy season in Table 3.3. The insignificant values of the calculated () 
statistic prove that the observed distributions of the lengths of wet and dry spells are very well fitted by the Markov based 

geometric distribution. The graphical representations of the observed and expected frequency distributions for the wet and 

dry spell lengths are shown in Figures 3.1 and 3.2 respectively to illustrate the closeness of such fits visually.  

 

Figure 3.1: Observed and Expected Frequencies of Wet Spells 
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Figure 3.2: Observed and Expected Frequencies of Dry Spells 

4. CONCLUSIONS 

Our study on the different aspects of the pattern of daily rainfall occurrence at Mahanadi delta leads to the 

following tentative conclusions: 

• The Markov chain probability model appears to have a good approximation for describing the occurrence of the 

sequence of wet and dry days.  

• The rainfall distributions of the four meteorological stations of the study domain exhibits more or less similar 

pattern.  

• On the whole, as judged by the () - test of goodness of fit, the geometric distribution under the assumption of 

Markovian dependence of weather occurrence seems to be satisfactory for describing the distributions of wet and 

dry spell lengths. 

• During the rainy season, the expected lengths of dry spell and wet spell are about 4 days and 2 days respectively, 

and the system settles down after about 7 to 13 days to a condition of statistical equilibrium in which the 

occupation probabilities are independent of the initial conditions. The estimated ranges for the expected numbers 

of dry days and rainy days during the period of 153 days are 81–112 and 41–72 days respectively.   

Although the Markov chain model provides a satisfactory fit to our daily rainfall data for evaluating probability of 

occurrence of the sequence of wet or dry days, we stress that more detailed and exhaustive investigations may be made with the 

help of other models and with new definitions of wet and dry days as well as other goodness of fit tests.  
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